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Introduction

A New Psychoactive Substance (NPS) is a substance of abuse, either in 
a pure form or a preparation, that are not controlled by the 1961 Single 
Convention on Narcotic Drugs or the 1971 Convention on Psychotropic 
Substances, but which may pose a public health threat”. In this context, 
the term “new” does not necessarily refer to novel inventions but to sub-
stances that have recently become available.

Since their emergence, NPS have been known in the market by terms 
such as “designer drugs,” “legal highs,” “herbal highs,” and/or “bath salts.” 
The term “designer drugs” had been traditionally used to identify syn-
thetic substances. However, it has recently been broadened to include 
other psychoactive substances that mimic the effects of illicit and, pre-
scription drugs. They are produced by introducing slight modifications 
to the chemical structure of controlled substances to circumvent drug 
controls1, 2. “Legal highs,” “herbal highs,” “research chemicals” and “bath 
salts” are also common names used to refer to NPS offered as a legal 
alternative to controlled drugs. 

Psychoactive substances controlled under the international drug control 
conventions produce their effects through a small number of pharmaco-
logical mechanisms including activation of cannabinoid receptors (e.g., 
cannabinoid receptor agonists); modulating the levels and action of 
monoamine neurotransmitters such as dopamine, epinephrine and sero-
tonin to induce excitatory responses in the central nervous system; act-
ing as N-methyl-D-aspartate (NMDA) receptor antagonists; interaction 
with opioid receptors or inhibitory neurotransmitters, and facilitating the 
action of the neurotransmitter gamma-aminobutyric acid (GABA) at the 
GABAA receptor to induce sedative, hypnotic and anxiolytic effects. It 
is important to note that some psychoactive substances may induce 
their physiological effects through one or more of these pharmacologi-
cal mechanisms3.
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For the purpose of this document and, due to the significant chem-
ical diversity within NPS, we will assign the functional categorisation 
(or “effect group”) classification and discuss synthetic NPS within six 
groups: (i) synthetic cannabinoid receptor agonists; (ii) classic halluci-
nogens; (iii) stimulants; (iv) opioid receptor agonists; (v) sedatives/hyp-
notics and (vi) dissociatives; based on the features related to their chem-
ical structure and purported psychopharmacological effects (Figure 1).

Figure 1: Distribution of NPS reported to the 
UNODC Early Warning Advisory on NPS by 
effect group.
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Synthetic Cannabinoid 
Receptor Agonists

This group of NPS is a class of substances with structural features 
that allow binding to the cannabinoid type-1 (CB1) and/or type-2 (CB2) 
receptors. These receptors are abundant in the central and peripheral 
nervous system, respectively, and display a pharmacological profile like 
(-)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive 
component in Cannabis 4–8. Activity at the CB1 receptor produces a char-
acteristic group of psychoactive effects including euphoria, enhance-
ment of sensory perception, antinociception, appetite stimulation, and 
impairment of memory. 

Synthetic cannabinoids are a particularly innovative, dynamic, and 
evolving group, evidenced by more than 300 individual substances hav-
ing been reported to UNODC. The number and rapid evolution of this 
group are also reflected in the NPS market, where the content of prod-
ucts containing SCRAs can vary both in terms of the actual cannabinoid 
or mixture of cannabinoids present and their concentration(s) between 
batches of SCRAs or products sold under a specific street name – con-
tributing to the significant health risk posed by these compounds and 
their products 9, 10. More than 20 SCRAs have been placed under interna-
tional control since 2015 (Figure 2).

5F-APINACA
MDMB-CHMICA

XLR-11

AM-2201
JWH-018
5F-PB-22

AB-CHMINACA

5F-MDMB-PINACA
5F-PB-22

AB-CHMINACA
AB-PINACA

UR-144

ADB-CHMINACA
ADB-FUBINACA

CUMYL-4CN-BINACA
FUB-AMB

4F-MDMB-BINACA
5F-AMB-PINACA
5F-MDMB-PICA
AB-FUBINACA

CUMYL-PEGACLONE
MDMB-4en-PINACA

ADB-BUTINACA

Figure 2: Synthetic Cannabinoid Receptor 
Agonists placed under international control 
since 2015.
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The first examples of SCRAs were produced in the 1980s to research 
cannabinoid receptor pharmacology and to investigate the therapeutic 
potential of drugs interacting with the cannabinoid receptor system. 
HU-210, a synthetic analogue of Δ9-THC, was first synthesized in 1988 
and is considered to have a potency of at least 100x greater than Δ9-THC 
11–14. Due to the similarity of its chemical structure to Δ9-THC, HU-210 is 
considered a “classical cannabinoid.” Another group of SCRAS, are cyclo-
hexylphenols (3-arylcyclohexanols, CP-series) which were developed by 
the pharmaceutical industry as potential analgesics and were termed 
“non-classical cannabinoids” (Figure 3) 6. The most potent SCRA within 
this sub-family is CP-47,497 and is regarded as one of the first SCRA 
NPS.

Both classical and non-classical cannabinoids have significant chal-
lenges in their synthesis and consequently, these compounds have 
been supplanted within the NPS market by simpler synthetic cannabi-
noid receptor agonists such as those described herein. The variation, 
evolution, and extensive production of SCRAs have been achieved by 
systematic modification of one or more of the four regions (core, linker, 
head, and tail) of the basic structure (Figure 4), using common inexpen-
sive precursors or equipment and relatively simple synthetic chemistry 
methods 15, 16. 
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R3 R4 Figure 3: Chemical structures of Δ9-THC, 

classical synthetic cannabinoid, HU-210 
and the non-classical cannabinoid 
CP-47,497.
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Figure 4: Generic structural representation 
of synthetic cannabinoid receptor agonists 
(SCRAs) obtained by modification of the 
key regions (core, linker, head, and tail) and 
using JWH-018 as the template.
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Synthetic cannabinoids can be further sub-divided into eight distinct 
sub-groups: (i) naphthoylindoles; (ii) phenylacetyl- and benzoylindoles; 
(iii) acylindoles; (iv) acylindazoles; (v) indole- and indazolecarboxylates; 
(vi) indole- and indazolecarboxamides; (vii) carbazoles and g-carbolines 
and (viii) N-alkylisatin-acylhydrazones 4, 5, 15, 16 (Figure 5).

Figure 5: Synthetic cannabinoid receptor 
agonists receptor (SCRA) sub-groups.
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Naphthoylindoles

The naphthoylindole sub-group of SCRA’s was independently synthe-
sized by John W Huffman (JWH-series) and Alexandros Makriyannis 
(AM-series) to identify the structural requirements for selective binding 
affinity (expressed as Ki) to the cannabinoid type-1 (CB1) receptor 6, 17–21. 
Despite a negligible selectivity for CB1, synthetic cannabinoids contain-
ing N-alkylated tail groups bearing 4 to 6 carbon atoms demonstrated 
effective hydrophobic interactions with the binding pocket of the recep-
tor, leading to an increase in affinity, whereas shorter (or longer) N-alkyl 
groups decreased affinity significantly 22–24. Replacement of the N-pentyl 
group, with either an N-5-fluoropentyl- or N-5-cyanopentyl group resulted 
in substantial increase in CB1 affinity19, 20, 25, 26. 

Chemical substitution of the ketone bridge with a methylene linker led to 
naphthylmethylindoles (e.g. JWH-175) that have a weaker affinity for the 
CB1 receptor compared to their naphthoylindole counterparts17. However, 
modification of the 1-naphthyl head group, through the introduction of 
4-alkoxy- (JWH-081) 20, 24, 27 or 4-halo-substituents (JWH-398) 20, 27, 28 pro-
vided access to active cannabimimetics. The most marked increase in 
potency was observed in 4-alkyl-substituted naphthoylindoles 27, which 
led to the JWH- and AM-series (specifically JWH-018 and AM-2201) (Fig-
ure 6) dominating the synthetic cannabinoid market for a period 6. 

N

O

(   )n

n = 0 (JWH-073)
n = 1 (JWH-018)
n = 2 (JWH-019)

N

O

JWH-030

N

O

R

R = F (AM-2201)
R = CN (AM-2232)

N

O

R = OCH3 (JWH-081)
R = Cl (JWH-398)
R = CH3 (JWH-122)
R = CH2CH3 (JWH-210)

R

N

O

R1

R = CH3; R1 = F (MAM-2201)
R = CH2CH3; R1 = F (EAM-2201)

R

N

R = H (JWH-175)
R = CH3 (JWH-184)
R = OCH3 (JWH-185)

R

Figure 6: Chemical structures of 
naphthoylindole-based synthetic 
cannabinoids. The structural differences 
between the derivatives and JWH-018 are 
highlighted in red.
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Phenylacetyl- and benzoylindoles

Simplified naphthoylindole derivatives, where the 1-napthyl group was 
replaced with either a phenylacetyl or benzoyl group were also devel-
oped to probe binding to the CB1 receptor (Figure 7). In the case of the 
phenylacetylindole, JWH-167, the affinity for the CB1-receptor was 10x 
less than observed for JWH-018 29, 30. However, the introduction of 2-alkyl- 
(JWH-251), 2-alkoxy- (JWH-250) or 2-halo-substituents (JWH-311, JWH-
203, and JWH-249,) led to improved binding 29, 31.

Substitution of the naphthalene group of JWH-018, with a 2-iodophe-
nyl- motif results in the benzoylindole derivative AM-679, which exhibits 
a similar level of binding to CB1 as JHW-018. 19, 32, 33. As with the naph-
thoylindole family, subsequent replacement of the N-pentyl group, in the 
AM-679 with an N-5-fluoropentyl- tail, resulted in a substantial increase 
in CB1 affinity (AM-694) (Figure 8) 34. 

Figure 7: Chemical structures of 
phenylacetyl -derived synthetic 
cannabinoids. The structural differences 
between the naphthyl- and phenylacetyl 
-derivatives are highlighted in red.

N

O

R = H (JWH-018)
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R = 3-OCH3 (JWH-302)
R = 2-CH3 (JWH-251)

RCS-8

R

N

O OCH3

Figure 8: Chemical structures of 
benzoylindole-derived synthetic 
cannabinoids. The structural differences 
between the naphthyl- and benzoylindole-
derivatives are highlighted in red.
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Acylindoles 

Novel 3-acylindole derivatives of SCRAs such as JWH-018 and AM-2201 
emerged in several countries in Asia, Europe, and the Americas, in the 
late 2000s. They feature non-aromatic, bulky alicyclic head groups, such 
as the adamantylindoles (e.g., AB-001) 33, 35, 36 and tetramethylcyclopro-
pylindoles (e.g., UR-144) 25, 36 (Figure 9). As with the naphthoylindole 
series, the replacement of the N-pentyl group with an N-5-fluoropentyl- 
tail resulted in substantial increase in CB1 affinity and led to the emer-
gence of cannabinoids such as 5F-AB-001 and XLR-11 37. 

Acylindazoles 

Similar to the emergence of acylindoles, a variety of acylindazole SCRAs 
also emerged. These substances such as (THJ-018, and THJ-2201) (Fig-
ure 10) feature a modified indazole core but retain specific head and tail 
groups for optimal CB1-receptor affinity 38–40. 

N

O

R = H (AB-001)
R = F (5F-AB-001)

N

O

R R

R = H (UR-144)
R = F (XLR-11)
R = Cl (5Cl-UR-144)

N

O

FUB-144

F

N

O

UR-144 N-(4-pentenyl)

Figure 9: Chemical structures of acylindole-
based synthetic cannabinoids. The 
structural similarity between XLR-11 and 
FUB-144 is highlighted in red.
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O

R = H (JWH-018)
R = F (AM-2201)

R

R = H (THJ-018)
R = F (THJ-2201)
R = Cl (5Cl-THJ-018)

R = H (BIM-018)
R = F (FUBIMINA)

N
N

O

R

N

N

Cl

O

Indole Indazole Benzimidazole

Figure 10: Chemical structures 
of acylindole-, acylindazole- and 
benzimidazole- based synthetic 
cannabinoids.
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Indole- and indazolecarboxylates 

In the early-mid 2010s, the NPS market pivoted towards SCRA analogues 
where the acyl-linker was substituted by either an ester or an amide linker 
(e.g., indole-an indazole carboxylates or carboxamides), (Figure 11). As 
with previous classes, structural features for efficacious CB1-receptor 
binding were retained 4, 41, 42.

In 2013, the first two indolecarboxylate synthetic cannabinoids reported 
were the quinoline-8-yl derivatives, BB-22 (QUCHIC) 25, 39, 43 and PB-22 
(QUIPIC) 25, 43–46. Cannabimimetic binding of PB-22 was improved by 
sequential replacement of the quinoline-8-yl- group for a 1-naphthyl- 
group (CBL-018) and subsequent introduction of terminal fluorine 
into the N-pentyl tail leading to a ten-fold increase in CB1 affinity (NM-
2201) 39, 47. Replacing the N-pentyl tail (in PB-22) with either an N-4-fluo-
robenzyl- group or with an N-5-fluoropentyl- chain resulted in FDU-PB-22, 
FUB-PB-22 39, 48 and 5F-PB-22 49, 50 (Figure 11).

Indazolecarboxylates are closely related to the indolecarboxylate family 
of cannabinoids, and some derivatives have been reported to UNODC, 
including the CBL-018, CBL-2201 analogues, SDB-005, 5F-SDB-005 25, 
quinoline-8-yl analogues, 5F-NPB-22 51, 52, FUB-NPB-22 53, adaman-
tan-1-yl-1H-indazole-3-carboxylates: APINAC 54–57 and 5F-AKB-57 58–60 
(Figure 12). 

Figure 11: Chemical structures of 
indolecarboxylate synthetic cannabinoids. 
The structural differences and evolution 
from CBL-018 to FUB-PB-22 are highlighted 
in red.
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As a result of their inherent metabolic instability/toxicity, both the indole- 
and indazolecarboxylate families were entirely replaced by the more sta-
ble amide (indole- and indazolecarboxamide) classes.

Indole- and Indazolecarboxamides

In 2012, the first indolecarboxamide SCRAs that were reported within 
the NPS market were APICA 25, 61–67 and its fluorinated derivative, 
5F-APICA 25, 63, 65, which both exhibited moderate CB1 receptor affinity. 
MEPIRAPIM another indole carboxamide also emerged at that time, 
however it acts as a T-type calcium channel inhibitor and has minimal 
CB1 affinity 68, 69.

Subsequently, a “mix and match” modification of the N-alkyl tails and 
replacement of the bulky adamantyl- head group for either phenyl- 
(N-phenyl-SDB-006) 35, benzyl- (SDB-006 and 5F-SDB-006,) 35, 53, 70–74 or 
1-naphthyl-(NNEI, 5F-NNEI; 5Cl-NNEI, and FDU-NNEI) 48, 74–79 groups led 
to a wide variety of products (Figure 13 and 14).

Phenyl- and benzyl-substituted indolecarboxamides generally exhibit 
weaker binding to the CB1 receptor compared to their adamantyl- and 
1-naphthyl counterparts. The exception to this trend is the sub-family 
of (2-phenylpropan-2-yl)- (or cumyl-) CB1 agonists: CUMYL-BICA CUMYL-
PICA, 5F-CUMYL-PICA, CUMYL-CHMICA, and CUMYL-FUBICA. All these 
CB1 agonists show significant increases in potency compared to their 
progenitors SDB-006 and 5F-SDB-006 25, 70, 80, 81. Several 7-azaindole-3-car-
boxamide derivatives (also known as the 7AICA-series) have also 
emerged in the synthetic cannabinoid market, including 5F-AKB-48-7N 82, 
CUMYL-5F-P7AICA 80, 83, CUMYL-4CN-B7AICA 84–87 and 5F-PCN 88. 

N
N
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R = H (SDB-005)
R = F (5F-SDB-005)

R

X N
N

O
O

X = CH (5F-NPB-22)
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F

N

N
N

O
O N

FUB-NPB-22

F

N
N

O
O

R = H (APINAC)
R = F (5F-AKB-57)

R

Figure 12:  Chemical structures of 
indazolecarboxylate-derived SCRAs. 

16

Synthetic Cannabinoid Receptor Agonists



Indazolecarboxamides are a direct extension of the indolecarboxam-
ide family of cannabinoids, where the indole core is replaced with an 
indazole. Since 2012, various derivatives have been reported, for exam-
ple SDB-005, 5F-SDB-005 (and analogues); MN-18, and 5F-MN-18 
48, 76, 79, 89, 90. Other examples are the adamantan-1-yl-1H-indazole-3-car-
boxamides: APINACA (AKB-48) 37, 56, 61, 66, 67, 75, 91–112, 5F-APINACA (5F-AKB-
48) 61, 94, 95, 98, 99, 101, 104–107, 110, 112, FUB-AKB-48 39 and Adamantyl-THPINACA 
61, 80, 113 (Figure 15). Cumyl-derivatives like CUMYL-BINACA 4, CUMYL-4CN-
BINACA 84, 87, 114–116, CUMYL-PINACA 80, 81, 84, 87, 117–119, 5F-CUMYL-PINACA 
84, 87, 95, 117, 120, CUMYL-CHMINACA, CUMYL-FUBINACA 4, 81 and CUMYL-
THPINACA 80, 113 are also known. These derivatives all show significant 
increases in cannabimimetic CB1 potency compared to their indole 
counterparts. 

Figure 13: Chemical structures of 
indolecarboxamide synthetic cannabinoids. 
The structural differences are highlighted 
in red.
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Figure 14: Further chemical structures of 
indolecarboxamide synthetic cannabinoids. 
The structural differences are highlighted 
in red.
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Amino Acid amides
This is an important sub-family within the broader indole- and indazole-
carboxamide series of synthetic cannabinoids e.g., valinamides [AB-se-
ries] 42, 121–123, tert-leucinamides [ADB-series] 42, 122–124 and/or phenylala-
ninamide [APP-series] 122, 123 (Figure 16). The incorporation of esters like, 
methyl valinate [AMB- or MMB-series], ethyl valinate [AEB- or EMB-se-
ries], methyl tert-leucinate [MDMB-series], and/or ethyl tert-leucinate 
[EDMB-series] is also possible (Figure 15) 41, 122, 125–132. 

Unlike the previously discussed cannabimimetics, which are achiral, 
these SCRAs contain an asymmetric carbon. In theory, these compounds 
are present in two enantiomeric forms – depending upon the source and 
enantio-purity of the precursor chemicals used. In most cases, a higher 
potency at the CB1 receptor is observed for the (S)-enantiomer over the 
(R)-enantiomers. In seized samples, the more active enantiomer appears 
to predominate 125–127, 133. 

As with previous generations, the indole-valinamide synthetic can-
nabinoids with N-alkylated tail groups bearing 4 or 5 carbons exhibit 
nanomolar CB1 affinity (e.g., AB-PICA) (Figure 16). Modification of the 
N-pentyl group, with either an N-5-fluoropentyl- (5F-AB-PICA) or aromatic 
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Figure 15: Chemical structures of 
indazolecarboxamide synthetic 
cannabinoids.
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N-4-fluorobenzyl- (AB-FUBICA), tail resulted in substantial increase in 
CB1 affinity. Compounds containing other side chains such as N-4-cy-
anobutyl- (4CN-AB-BUTICA), N-cyclohexylmethyl- (AB-CHMICA), and 
N-penten-4yl- (AB-4en-PICA) have also been reported. Replacement of 
the indole core with an indazole (e.g., AB-PICA versus AB-PINACA) leads 
to a 10x increase in potency in each congeneric derivative 4, 25, 41, 42. A simi-
lar increase in CB1-binding affinity was seen within the analogous indole- 
and indazole-tert-leucinamide [ADB-series] derivatives, 4, 41, 42, 123, 125, 126. 
The same was not observed in the APP-series derived from phenylal-
anidamide (e.g., 5F-APP-PICA, 5F-APP-PINACA, APP-CHMICA, APP-CH-
MINACA, and APP-FUBINACA), where the presence of the bulky aro-
matic group significantly reduces CB1 cannabimimetic activity in many 
cases 122, 123, 134. Further chemical modification of the tail groups (e.g., 
5Cl-AB-PINACA; ADB-4en-PINACA, ADB-HEXINACA, and ADB-BINACA) or 
replacement of the core with a 7-azaindole scaffold (ADB-P7IACA) in the 
most active ADB-series resulted in an increase in the variety of potent 
and potentially more harmful analogues on the market 122, 124, 134–137.
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Figure 16: Chemical structures of 
indazolecarboxamide synthetic 
cannabinoids.
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An extension of this sub-family has also emerged, where the amino acid 
amide group was replaced with either a commercially available, chiral 
methyl valinate [AMB- or MMB-series], ethyl valinate [AEB- or EMB-series], 
methyl tert-leucinate [MDMB-series] or ethyl tert-leucinate [EDMB-series] 
group. Similar to the AB-, ADB-, and APP-series, in most cases, a higher 
potency at the CB1 receptor is observed for the (S)-enantiomer over the 
(R)-enantiomers. In seized samples, the active enantiomer appears to 
predominate 4, 15, 70, 125–128, 133. The AMB-/MMB- and MDMB-series of deriv-
atives bearing N-4-fluoropentyl-, N-5-fluoropentyl- and N-penten-4-yl- 
groups show the same trends, except for in terms of binding affinity as 
their amide counterparts with indazoles observed to be more potent 
than indoles and the tert-leucinate derivatives more potent than the vali-
nate derivatives (Figure 17). 

The N-4-fluorobenzyl- (AMB-FUBICA, MDMB-FUBICA, AMB-FUBINACA 
and MDMB-FUBINACA), N-cyclohexylmethyl- (AMB-CHMICA, MDMB-CH-
MICA, AMB-CHMINACA, and MDMB-CHMINACA), N-4-cyanobutyl- 
(4CN-MMB-BUTINACA), N-5-chloropentyl- (5Cl-MDMB-PINACA) and 
7-azaindole (5F-MDMB-P7AICA) derivatives show similar trends in terms 
of their CB1-binding affinities as their corresponding amide counterparts. 
Recently a small number of ethyl valinate (EMB-) and tert-leucinate 
(EDMB-) derivatives have also been reported.

Figure 17: Chemical structures of (S)-amino 
acid ester derivatives (AMB-/MMB-, EMB-, 
MDMB and EMDB-series) of the indole- and 
indazolecarboxamide families.
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Carbazoles and γ-Carbolines

After the national control of some indoles, indazole, and benzimid-
azole-derived synthetic cannabinoids, the NPS market again shifted 
towards previously unexplored chemical structures. In 2014, tricyclic 
synthetic cannabinoids, such as the carbazole (e.g., EG-018 82, 112, 138, 139, 
EG-2201 140, 141, MDMB-PCZCA and MDMB-CHMCZCA 141–143) and γ-carbo-
line (e.g., CUMYL-PEGACLONE) 112, 144, 145 were first identified and exhibited 
moderate CB1 affinity (Figure 18). Between 2017 – 2020 several γ-car-
boline analogues, where the N-pentyl tail has been replaced with either 
a N-5-halopentyl- (e.g., 5F-CUMYL-PEGACLONE and 5Cl-CUMYL-PEGA-
CLONE) or cycloalkyl- group (e.g., CUMYL-CH-MEGACLONE, CUMYL-
CB-MEGACLONE and CUMYL-BC-HPMEGACLONE) have emerged in 
Europe 112, 144–153. 

N-alkylisatin-acylhydrazones

In 2021, new substances with previously unencountered and/or not well 
characterized structural modifications appeared on the market, including 
the weak CB1 binding N-alkylisatin-acylhydrazone, MDA-19 (also known 
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Figure 18: Chemical structures of tricyclic 
synthetic cannabinoids.
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as BZO-HEXOXIZID) 154, and its related analogues (5Cl-MDA-19, BZO-POX-
IZID, 5F-MDA-19, 5F-BZO-POXIZID and CHM-MDA-19, BZO-CHMOXIZID) 
(Figure 19). At the time of writing, these compounds have been identi-
fied in smoking blends (Americas and Asia) and reported in the literature 
154, 155.

Commonly Used Forms

SCRAs as bulk crystalline powders are generally dissolved in a volatile 
organic solvent such as acetone, methanol, or ethanol. They can be 
infused directly onto inert plant material (resembling traditional herbal 
cannabis), paper/card, clothing, or dispersed within e-liquids for smok-
ing (either directly or mixed with tobacco) or vaping 15, 16, 117, 125, 130, 145, 156, 1

57. Though the most common route of administration is inhalation (via 
water pipe/bong, cigarette, blunt, pipe, or vaping), oral, rectal, and intra-
venous administration routes have been reported (Figure 20) 117. 
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Figure 19: Chemical structures of 
N-alkylisatin-acylhydrazone derived 
synthetic cannabinoids.
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Figure 20: Commonly used forms of 
synthetic cannabinoid receptor agonists.
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Reported Effects

a The reported effects of the substances mentioned 
in this document are taken from the literature 
referenced herein and from the UNODC Terminology 
and Information on Drugs (ST/NAR/51) link.

Figure 21: Reported effects of synthetic 
cannabinoid receptor agonists a.
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Classic hallucinogens

Hallucinogens are a diverse group of naturally occurring and synthetic 
drugs that induce distorted states of consciousness, perception, think-
ing, and feeling, accompanied by different degrees of auditory or visual 
hallucinations. They are also referred as “psychedelics,” which ultimately 
produce altered perceptions of reality 158 . Classic hallucinogenic sub-
stances elicit their pharmacological effect through their interaction with 
the serotonin (5-HT2A, 5-HT2B, and/or 5-HT2C) and dopamine (D1, D2, and/or 
D3) receptors in the central nervous system. Classic hallucinogens can 
be divided into three chemically related sub-groups: (i) hallucinogenic 
phenethylamines, (ii) tryptamines and (iii) lysergamides (Figure 22).

There are a number of substances with classic hallucinogenic effects 
under international control. Examples include (+)-Lysergide (LSD), DMT 
(N,N-dimethyltryptamine), psilocybine, mescaline, brolamfetamine 
(DOB), and 2C-B.

NPS with classic hallucinogenic effects that have been placed under 
international control since 2015 include 25B-NBOMe, 25C-NBOMe, 
25I-NBOMe and DOC (Figure 23).

Figure 22: Classic hallucinogens 
sub-groups.

Figure 23: Classic hallucinogens placed 
under international control since 2015.
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Hallucinogenic Phenethylamines

Phenethylamines (PEA) refer to a class of substances that can have 
stimulant, and/or hallucinogenic effects depending on the position and 
identity of functional group substituents on the phenethylamine core. 
The eight positions of the phenethylamine scaffold that can be modi-
fied to generate a wide range of substituted phenethylamine analogues 
are highlighted (Figure 24). More than 180 phenethylamines have been 
reported to UNODC, with 80 of them being classified as classical halluci-
nogens. Among these, 63 examples possess a 2,5-dimethoxy substitution 
pattern on the aromatic ring (80%). This is characteristic of phenethyl-
amines classified as “classic hallucinogens,” and they are represented by 
the 2C-, 2D - and NBOMe sub-family. The remaining compounds contain 
the 2,5-dimethoxy substitution, -3,5-dimethoxy substitution, and trime-
thoxy substitution, or are NBOMe variations of amphetamines, mesca-
line analogues, and the “Fly” compounds. 

Figure 24: Chemical structures of 
phenethylamine and the structural related 
analogues. The eight positions of the 
phenethylamine core and the key structural 
differences between the analogues are 
highlighted in red.
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2C-series
The largest of these three sub-families is known as the “2C-series”. These 
compounds have a similar structure to mescaline (3,4,5-trimethoxy-
phenethylamine), and are characterised by methoxy groups situated at 
the 2- and 5-positions of the aromatic ring with a variety of substituents 
at the 4- position for example 4-iodo-2,5-dimethoxyphenethylamine (2C-
I). The psychoactive effects have been reported to be dose-dependent, 
ranging from mild stimulation at lower doses, to hallucinogenic and 
entactogenic (empathogenic) effects at higher doses159. 

2D-series
The introduction of a methyl-group in the alpha position of 2C series 
substances provides access to ring-substituted amphetamine deriva-
tives, known as the “D-series”, sometimes referred to as phenylisopro-
pylamines, such as 4-iodo-2,5-dimethoxyamphetamine (DOI) and, the 
trimethoxyamphetamines (TMA-2 and TMA-6). The D-series are more 
potent with a longer duration of action, due to their metabolic stability 
to monoamine oxidases in the body, compared to their 2C-progenitors. 
For example, the duration of action for 2C-I is reported to be 6 – 10h 
versus 16 – 30h for DOI159. Although some of the 2C and 2D series sub-
stances are under international control, an increasing number of NPS 
within these groups have been reported in recent years.

NBOMe-series
Since 2010, several novel 2C-phenethylamine analogues, containing an 
N-(2-methoxybenzyl)- group, have emerged and are commonly referred 
to as either 25X-NBOMes, NBOMes, or simply “N-Bombs”. The NBOMe-se-
ries substances can be directly synthesised from their 2C-progenitors, 
and are potent, selective, and highly efficacious agonists of 5-HT2A and 
5-HT2C receptors 160 161. Recently, over 30 related substances within this 
subgroup have been reported to UNODC. Out of this, 15 were identi-
fied as NBOMes, while others are the para-isomers of 25C-NBOMe and 
25B-NBOMe. 

Among other potent hallucinogenic phenethylamines that have been 
reported to UNODC, several contain either a benzodifuranyl- (e.g., 2C-B-
FLY) or tetrahydrobenzodifuranyl group (e.g., Bromo-DragonFLY, which 
has been implicated in several fatalities in Europe). Hybrids of these 
families, such as 2CBFly-NBOMe and 5-APB-NBOMe, have also been 
reported. 
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Tryptamines

Hallucinogenic tryptamines are a group of substances related struc-
turally and in action to both internationally controlled hallucinogens, 
(+)-lysergide (LSD) and psilocybin. The seven positions of the tryptamine 
core that can be modified to generate a wide range of substituted ana-
logues are highlighted (Figure 25). Like the phenethylamines, they can 
be accessed using common inexpensive precursors or equipment and 
relatively straightforward synthetic strategies.

More than 60 individual tryptamine NPS in which the aromatic ring has 
been modified at the 4- and 5-positions (R2 and R3) and the ethylamino- 
sidechain (R and R1) substituted with the following groups have been 
reported to UNODC:

 – symmetrical groups (e.g., 5-AcO-DMT,5-MeO-DPT, 5-MeO-DALT),

 – unsymmetrical groups (e.g., MALT or 5-MeO-MALT),

 – alkyl-, branched alkyl-, cycloalkyl- or allyl- groups in a wide variety of 
combinations, though N,N-dimethyl-substituted tryptamines appear 
to be the most common within this group. 

Based on the site of ring substitution, tryptamines can be divided into 
three groups: unsubstituted, 4-substituted, and 5-substituted. Substitu-
tions in the 6- and 7-positions of the tryptamine scaffold (R4 and R5) also 
may occur but are not commonly observed and they have been associ-
ated with a decrease in hallucinogenic activity. Introduction of methyl- 

Figure 25:  Chemical structures of 
tryptamines and the structural related 
analogues. The seven positions of the 
tryptamine core and the key structural 
differences between the analogues are 
highlighted in red.
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or ethyl-branching into the ethylamino- sidechain, provides access to 
alpha-methyl- and alpha-ethyltryptamines, referred to as the α-MT- and 
α-ET-series respectively, and include: α-methyltryptamine (AMT), 5-MeO-
AMT and the internationally controlled etryptamine (AET) which exhibits 
both hallucinogenic and stimulant effects.

Lysergamides

Another group of NPS with hallucinogenic properties are derivatives of 
the internationally controlled (+)-Lysergide (LSD). While the molecules 
have a complex structure, they all share a common motif with simpler 
tryptamines (Figure 26). 

A number of lysergamides have been reported to UNODC including 
analogues with structural modifications of LSD such as 1-acetyl-LSD 
(ALD-52), 1-methyl-LSD (1M-LSD, MLD-41), 1-cyclopropylmethanoyl-LSD 
(1cP-LSD), 1-propionyl-LSD (1P-LSD), 1-butyryl-LSD (1B-LSD), 1-valer-
yl-LSD (1V-LSD) and lysergic acid 2,4-dimethylazetidide (LSZ). 
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Figure 26: Chemical structures of 
lysergamides. The key structural similarity 
between these analogues and tryptamine is 
highlighted in red.
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Commonly Used Forms

Routes of administration for classic hallucinogens, as either pills or 
powders, include nasal insufflation, inhalation, ingestion, and intrave-
nous injection. These routes can also be used for the delivery of potent 
psychedelic hallucinogens, such as (+)-Lysergide (LSD) or N-(2-methoxy-
benzyl)-substituted phenethylamines. These substances are normally 
consumed via the sublingual/buccal route employing “blotters” impreg-
nated with the psychoactive substance (Figure 27). 

Reported Effects

Inhalation (via water,
pipe/bong/cigarette,
blunt, pipe or vaping)

Nasal
insufflation

Oral
consumption

Oral consumption

Oral consumption

Intravenous and 
intramuscular injection

Nasal insufflation

Figure 27: Classic hallucinogens commonly 
used forms.

Figure 28: Reported effects of classic 
hallucinogens.
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Stimulants

Substances within this effect group produce a stimulatory effect on the 
central nervous system and modulate the levels and activity of import-
ant neurotransmitters such as dopamine, norepinephrine, and serotonin. 
The action of these neurotransmitters induces a range of excitatory 
responses in the central nervous system. The differing degrees to which 
a substance affects these neurotransmitters contribute to the psycho-
stimulant properties of individual substances.

Examples of the stimulant class include a variety of structural sub-
groups such as aminoindanes, oxazolines (e.g., aminorex-derivatives), 
phenethylamines, phenidates, phenylmorpholines (phenmetrazines), 
piperazines and synthetic cathinones. These compounds represent the 
largest category of NPS with almost 400 individual substances having 
been reported to UNODC (Figure 29). 

Figure 29: Stimulant sub-groups.
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3-Methylmethcathinone
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Ethylphenidate
Methiopropamine

Pentedrone

4-Fluoroamphetamine

-Pyrrolidinovalerophenone

Figure 30: Stimulants placed under 
international control since 2015.
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Prior to 2015, there were 40 stimulants under international control. From 
2015-2023, a further 20 stimulants were placed under international con-
trol including 14 synthetic cathinones (Figure 30).

Aminoindanes

In the 1970s, 2-aminoindane (2-AI) and its substituted derivatives were 
reported to possess significant broncho-dilating and analgesic proper-
ties. Recent research has indicated that they also have effects on sero-
tonin release and reuptake 6, 162–165. These substances have been sold as 
NPS for their ability to produce empathogenic and entactogenic effects 
of serotonin releasing drugs, such as MDMA. Within this class, specifi-
cally, MDAI 166–171 and 5-IAI 172 are reported to be highly potent agents. 
Currently, nine aminoindanes (Figure 31) have been reported to UNODC.

2-Amino-5-aryl-2-oxazolines

The 2-amino-5-aryl-2-oxazoline family of stimulants encompasses three 
distinct sub-families: 2-amino-5-phenyl-2-oxazolines (e.g., aminorex), 
4-alkyl-2-amino-5-aryl-2-oxazolines (e.g., 4-MAR, and 4,4’-DMAR) and 
2-oxazolidinimines (e.g., 3,4-DMAR) (Figure 32) 173. Since the 1990’s, both 
aminorex and 4-methylaminorex have been under international control, 
and 4,4′-dimethylaminorex (4,4’-DMAR) was scheduled internationally 
in 2016. An additional six aminorex derivatives that are NPS have been 
reported to UNODC.

Figure 31: Common aminoindane NPS. The 
structural similarity between aminoindanes 
and amphetamines (e.g., amphetamine, 
methamphetamine and MDMA) are 
highlighted in red.
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Phenethylamines

Phenethylamines (and phenylisopropylamines, which are more com-
monly known as amphetamines) are well-documented classes of 
psychoactive substances which possess stimulant, and/or halluci-
nogenic effects. These compounds are structurally related to amphet-
amine, methamphetamine, and 3,4-methylenedioxymethamphetamine 
(MDMA). Phenethylamine-based stimulants modulate monoaminergic 
neurotransmission by inhibiting norepinephrine, dopamine, and sero-
tonin transporters. In addition, they interact with monoaminergic recep-
tors and other targets that mediate non-exocytotic monoamine efflux. 

The principal positions of the phenethylamine or phenylisopropylamine 
core that can be modified to generate a wide range of substituted ana-
logues are highlighted (Figure 33) 159, 174, 175. Trisubstituted phenethyl-
amines with hallucinogenic properties such as the 2C and 2D -series, 
have been previously discussed. 

While “classic hallucinogens” are derived from their respective progen-
itors: 2,5-dimethoxyphenethylamine and 2,5-dimethoxyphenylisopro-
pylamine (2,5-dimethoxyamphetamine), the substitution of these key 
2- and 5-methoxy groups for other functional groups can dramatically 
shift the subjective effects from hallucinogenic to stimulatory. Over 170 
phenethylamines, falling into three distinct subfamilies (ring-substituted 
phenethylamines, amphetamines, and methylenedioxyphenethylamines) 

Figure 33: Generic structural 
representation of phenethylamine and 
phenylisopropylamine-derived stimulants 
obtained by modification of the highlighted 
key regions and using phenethylamine and 
amphetamine as the progenitor template.
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have been reported to UNODC. The largest group is the ring-substituted 
phenethylamines followed by substances having the amphetamine 
core and various substituents on either the aromatic ring, the isopropyl-
amino- sidechain, or both. The remainder are classified as methylenedi-
oxyphenethylamines. Mono-substituted substances can exist as either 
their 2-, 3- or 4-positional isomers (commonly known as the ortho-, meta- 
and para-regioisomers). 

The types of substituents that can be added to the amino group of 
amphetamine are relatively restricted (Figure 34). N-Methyl and N-ethyl 
groups are tolerated, but larger N-alkyl (e.g., n-propyl-, n-butyl-, ben-
zyl-, 1-methylpentyl-, 1,4-dimethylpentyl- and pyrrolidinyl-) groups have 
reduced catecholamine-releasing activity. 

Tertiary amine analogues (e.g., N,N-dimethylamphetamine, N,N-dimethyl-
methylenedioxyamphetamine, and N,N-dimethyl-3,4-dimethoxyamphet-
amine) are believed to act as prodrugs. They undergo N-dealkylation in 
vivo to generate methamphetamine, MDMA, and 3,4-dimethoxyamphet-
amine respectively. Replacement of the phenyl-ring for 2-thiophene in 
amphetamine (or methamphetamine) leads to the stimulants, thiopro-
pamine and methiopropamine which are less potent than their phenyli-
sopropylamine progenitors. However, they have been sold on the NPS 
market in their pure form and combination.

The phenethylamines grouped as “methylenedioxyphenethylamines” 
reported to UNODC also include the related 2,3-dihydro-1,4-benzodiox-
in-6-yl- (e.g., 3,4-EMDA), tetrahydrobenzodifuranyl- (5-APDB; 5-MAPDB 
and 6-APDB); and benzodifuranyl- (4-EAPB; 5-APB; 5-MAPB; 5-MBPB; 
5-EAPB and 6-APB or “Benzofury”) analogues. Disubstituted substances 
such as the dimethoxy- (e.g., 2,4-DMA and 3,4-DMA), indanyl- (e.g., 
5-APDI and 5-MAPDI); and 5-indolyl- (e.g., 5-IT or “5-API”) analogues also 
fall within this sub-family (Figure 35). 5-Methoxy- and 6-halo-derivatives 

Figure 34: Chemical structures of mono- 
and N-alkyl-substituted phenethylamines.

NH2

X1

X3

X2

Me

X1 = F, R2 = R3 = H (2-FA)
R1 = R3 = H, X2 = F (3-FA)
R1 = R2 = H, X3 = F (4-FA)
R1 = R2 = H, X3 = Cl (4-CA)
R1 = R3 = H, X2 = Br (3-BA)
R1 = R2 = H, X3 = Br (4-BA)

N

Me
Me

Me
N

Me
Me

Me
O

O

N

Me
R

Me
MeO

MeO

R = Me, (N,N-dimethyl-3,4-dimethoxyamphetamine)
R = H, (3,4-dimethoxymethamphetamine)

DMA MDDMA

NH2

R1

R3

R2

Me

R1 = Me, R2 = R3 = H (2-MA)
R1 = R2 = H, R3 = Me (4-MA)
R1 = OMe, R2 = R3 = H (OMA)
R1 = R2 = H, R3 = OMe (PMA)
R1 = SMe, R2 = R3 = H (2-MTA)
R1 = R3 = H, R2 = SMe (3-MTA)
R1 = R2 = H, R3 = SMe (4-MTA)

H
N

R2

R1

Me

R = Me, R1 = F, R2 = H (3-FMA)
R = Me, R1 = H, R2 = F (4-FMA)
R = Et, R1 = F, R2 = H (3-FEA)
R = Et, R1 = H, R2 = F (4-FEA)
R = Me, R1 = H, R2 = OMe 
(PMMA)
R = Me, R1 = H, R2 = OMe (PMEA)

R

33

Stimulants



of MDMA, such as MMDMA, 6-Cl-MDMA, and 6-Br-MDMA have been 
reported, however, data on their prevalence, pharmacology, and toxicity 
remain unreported. Many of these compounds share common structural 
features and have been sold as NPS for their purported ability to produce 
effects like other dopamine and serotonin-releasing drugs (e.g., MDA 
and MDMA).

Figure 35: Chemical structures of 
di-substituted phenethylamines.

H
N

R2

R4
R1

H
N

Me
R

R
R3

R = R3 = H, R1 = Me, R2 = R4 = OMe (2,4-DMA)
R = R2 = H, R1 = Me, R3 = R4 = OMe (3,4-DMA)
R = R2 = H, R1 = Et, R3 = R4 = O (MBDB)
R = R2 = H, R1 = Et, R3 = R4 = O (MDPR)

O
O H

N

Me
R

R = H (2,3-MDA)
R = Me (2,3-MDMA)

O

O

NHMe

Me

3,4-EMDA

R = H (5-APDI)
R = Me (5-MAPDI)

H
N

Me
R

O

R = H (5-APDB)
R = Me (5-MAPDB)

NH2

Me

O

6-APDB

H
N

R1

R

O

R = H, R1 = Me (5-APB)
R = R1 = Me (5-MAPB)
R = Me, R1 = Et (5-MBPB)
R = Et, R1 = Me (5-EAPB)

NH2

Me

O

6-APB

O NHEt

Me

4-EAPB

NH2

MeN
H

5-IT

NHMe

Me

O

O

R = Cl, R1 = H (6-Cl-MDMA)
R = Br, R1 = H (6-Br-MDMA)
R = H, R1 = OMe (MMDMA)

R
R1

34

Stimulants



Phenidates

Methylphenidate (Ritalin®) is a potent orally active reuptake inhibitor of 
norepinephrine and dopamine used to treat attention deficit-hyperactiv-
ity disorder (ADHD) and narcolepsy. Some analogues of methylpheni-
date 2, 176–178 have emerged, with an extension of the carbon side chain 
(e.g., ethylphenidate, propylphenidate, and isopropylphenidate). Struc-
tural modification of the phenidate core provides access to the related 
pipradrol, desoxypipradrol, and desoxyprolinol psychostimulants (Figure 
36). Replacement of the phenyl ring with a 1-naphthyl ring has also been 
reported. Ten examples of this class of NPS (specifically seven pheni-
dates, two prolinol, and one pipradrol derivative) have been reported to 
UNODC. 

Phenylmorpholines

Phenylmorpholines are a family of orally active stimulants derived from 
the controlled substance phenmetrazine (Preludin) which was devel-
oped in the mid-1950s as an appetite suppressant 179 and is a potent 
substrate for dopamine and norepinephrine transporters. The synthetic 
approaches to phenylmorpholines can easily be adapted to access 
ring-modified analogues. Subsequently, eight novel phenmetrazines 
have been reported to UNODC. (Figure 37). 

Figure 36: Chemical structures of 
methylphenidate derived NPS. The 
structural differences are highlighted in red.
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phenylmorpholine derived NPS. The 
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Piperazines

Piperazines are a group of stimulants that have been considered “failed 
pharmaceuticals.” Some of them had been evaluated as potential thera-
peutic agents by pharmaceutical companies but never brought to the 
market 6, 180–193. While the best-known piperazine that has been used as 
an NPS is 1-benzylpiperazine (BZP), more than 20 analogues (including 
five 1-benzylpiperazines and sixteen 1-phenylpiperazines) have been 
reported to UNODC (Figure 38). Pharmacological studies of piperazines 
have focused on BZP and have indicated that it is approximately one-
tenth of the potency of amphetamine and produces similar toxic effects. 
The substances trigger the release of dopamine and norepinephrine 
whilst inhibiting the uptake of dopamine, norepinephrine, and serotonin. 

Figure 38: Chemical structures of 
piperazine derived NPS.
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Synthetic cathinones

Synthetic cathinones are a group of psychostimulants closely related 
to phenethylamines but with the additional presence of a carbonyl or 
β-keto (or “bk”) group on the side chain of the phenethylamine scaffold. 

In the mid-2000s, a variety of synthetic cathinones (Figure 39) appeared in 
drug markets. However, since the late 1920s, substances such as N,N-di-
ethylcathinone, and 4-methylmethcathinone (4-MMC, mephedrone) have 
been reported in the literature. Although, some compounds were inves-
tigated for potential medicinal applications such as antidepressants, 
appetite suppressants, and treatment of chronic fatigue or lethargy, only 
bupropion (Wellbutrin® or Zyban®), is currently available in the market. 

Depending on the modification made on the cathinone scaffold, the 
respective synthetic cathinones can be separated into four different 
structural sub-families: (i) N-alkylcathinones: characterized by alkyl sub-
stitutions in the amino group and possible alkyl or halogen substitutions 
in the aromatic ring, and/or alkyl substitutions in the a-carbon of the 
side chain (Figure 40 and 41); (ii) N-pyrrolidino cathinones: character-
ized by a pyrrolidinyl substitution in the amino group and possible alkyl- 
or halogen substitutions in the aromatic ring and/or alkyl substitutions 
in the a-carbon of the side chain (Figure 40 and 41); (iii) the methylene-
dioxy-N-alkyl cathinones: characterized by the addition of a methylene-
dioxy- group to the aromatic ring (either the 2,3- or 3,4-isomer) and alkyl- 
substitutions in the amino group, and possible alkyl- substitutions both 
in the a-carbon of the side chain and in the aromatic ring (Figure 42); and 
(iv) methylenedioxy-N-pyrrolidine cathinones: characterized by the addi-

Figure 39: Chemical structures of 
phenylmorpholine derived NPS. The 
structural differences are highlighted in red.
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tion of a methylenedioxy- group to the aromatic ring (either the 2,3- or 
3,4-isomer) and a pyrrolidinyl substitution in the amino group and possi-
ble alkyl substitutions both in the a-carbon of the side chain and in the 
aromatic ring (Figure 40 and 41). Additionally, synthetic cathinone pre-
senting unique structures such as bk-2C-B, 1-naphythyl- (a-naphyrone), 
2-naphthyl- (b-naphyrone, O-2482), indanyl- 5,6,7,8-tetrahydronaphtha-
len-2-yl- and 2-thiophenyl- derivatives can be aggregated in a chemical 
sub-family (Figure 40 and 41). Many are partially or fully effective sub-
strate-type releasers at one or several of the monoamine transporters. 
Some compounds, such as the N-pyrrolidine- and methylenedioxy-N-pyr-
rolidine derivatives (e.g., alpha-PVP and MDPV) are transporter inhibitors 
that increase the monoamine content in the synaptic cleft and conse-
quently lead to the hyperstimulation of post-synaptic receptors.

The history, chemistry, and pharmacological action of synthetic cathi-
nones have been the subject of several reviews 6, 185, 194–228. Currently, syn-
thetic cathinones represent the largest group of psychostimulants that 
are monitored by UNODC, with over 200 individual substances having 
been reported. 

Figure 40: Chemical structures of N-alkyl- 
and N-pyrrolidine cathinone derived NPS. 
The structural differences are highlighted 
in red.
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R = Bn, R1 = R2 = H, R3 = Me (4-Me-N-benzylbuphedrone)
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R = Et, R1 = R2 = H, R3 = F (4-F-N-
ethylpentedrone)
R = Et, R1 = R2 = H, R3 = Me (4-Me-N-
ethylpentedrone)
R = Pr, R1 = R2 = R3 = H (N-propylpentedrone)
R = iPr, R1 = R2 = H, R3 = F (4-F-N-
isopropylpentedrone)
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Figure 41:  Chemical structures of N-alkyl- 
and N-pyrrolidine cathinone derived NPS. 
The structural differences are highlighted 
in red.
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Figure 42:  Chemical structures of 
methylenedioxy-N-alkyl, methylenedioxy-N-
pyrrolidine, and miscellaneous cathinone 
derived NPS. The structural differences are 
highlighted in red.
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Commonly Used Forms

On the illicit market, central nervous system stimulants are normally 
encountered in orally active solid-dosage forms (e.g., powder or pills) 
and can be insufflated or inhaled, swallowed (often wrapped in cigarette 
papers, colloquially known as “bombing”), smoked, and less commonly 
injected or used rectally (Figure 43) 

Reported Effects

Currently, there is limited pharmacological and toxicological data on 
many aminoindanes. Users report effects including euphoria, empa-
thy, stimulation (not the case with MDAI), and cognitive enhancement 
after either ingestion or insufflation. Adverse effects described by users 
include dehydration, increased perspiration, anxiety, depression, panic 
attacks, and tachycardia with a limited number of MDAI-related deaths 
reported 167, 171, 230, 231 (Figure 44).

Compared with amphetamine, an increase in serotonergic neurotoxicity 
has been reported for 4-chloroamphetamine (4-CA). Other halogenated 
substances, such as 4-fluoroamphetamine have been associated with 
various mild-to-moderate adverse effects (e.g., agitation, severe head-
ache, anxiety, confusion, hypertension, tachycardia, chest pain, and nau-

Nasal
Insufflation

Nasal insufflation

Smoking

Smoking

Smoking

Insufflation

Intravenous and
intramuscular injection

Injection

Oral consumption
Figure 43: Stimulants commonly used 
forms.
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sea) and severe adverse effects (e.g., coma, convulsions, cerebral hae-
morrhage, and cardiac arrest resulting in fatality). 4-Methoxy- (PMA and 
PMMA) and 4-thiomethyl- (4-MTA) analogues have been more often asso-
ciated with incidental deaths. Specifically, PMA and PMMA, are known to 
have a particularly high toxicity and there are many reports of fatalities 
associated with their use 232–236. Clinical observations have reported tran-
spiration, tremor, severe nystagmus, headache, and severe hyperthermia 
following the use of these substances. In the case of 4-MTA, moder-
ate-to-mild clinical effects include headache, stomach pain, sweating, 
tachycardia, and severe tremors, with more serious intoxication leading 
to seizures, coma, respiratory failure, and serotonergic toxicity. There 
is limited pharmacological and toxicological data on many phenidate 
analogues and most pharmacological studies have focused on methyl-
phenidate and, to a lesser degree, ethylphenidate. Self-reported adverse 
effects of phenidate derivatives include agitation, anxiety, hypertension, 
tachycardia, and palpitations.

There is limited pharmacological and toxicological data on many phen-
metrazine analogues. Symptoms commonly associated with acute, 
non-fatal, intoxications involving 3-fluorophenmetrazine include tachy-
cardia, reduced level of consciousness, agitation/anxiety, and delirium. 
Less common symptoms such as miosis, seizures, and hypertension 
are also observed. Adverse effects of the use of piperazine-derived NPS 
include nausea, headache, dizziness, sweating, and potential cardiovas-
cular symptoms. Self-reported psychological problems experienced by 
users have included trouble sleeping, loss of energy, strange thoughts, 
mood swings, confusion, and irritability183, 191, 237–242.

Short-term adverse effects reported following synthetic cathinone use 
are variable and may include, loss of appetite, blurred vision, anxiety, 
post-use depression, confusion, hallucinations, short-term psychosis, 
and mania. Clinical reports have noted that MDPV and its methylenedi-
oxy-N-pyrrolidine analogues use may result in anxiety, paranoia, memory 
loss, and aggression 207, 224, 226, 243–245. Individuals intoxicated with N-eth-
ylpentylone displayed a variety of symptoms common to sympathomi-
metic toxicity including, palpitations, tachycardia, agitation, aggression, 
hallucinations, coma, and, in some cases, death. Intoxication by syn-
thetic cathinone may also lead to severe adverse effects including acute 
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liver failure, acute kidney injury, high blood pressure, and tremor. Habitual 
users have also reported the development of tolerance, dependence, or 
withdrawal symptoms with prolonged use 185, 199, 207, 210, 214, 217, 221, 223, 224, 246–

249. Numerous cathinone-related fatalities have been reported and these 
are mainly attributed to hyperthermia, hypertension, cardiac arrest, and 
serotonin syndrome 208, 211, 217, 250–254.

Figure 44: Reported effects of stimulants.
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Opioid receptor agonists

Opioid receptor agonists are a chemically diverse groups of substances 
which are central nervous system depressants. Their effects are medi-
ated through their interaction with inhibitory neurotransmitters and opi-
oid receptors. More generally, an opioid is a generic term applied to a 
variety of substances including naturally occurring opiates (e.g., opium 
and morphine), synthetic opioids (e.g., fentanyl and tramadol), semi-syn-
thetic opioids (e.g., heroin), as well as new psychoactive substances 
(NPS) with opioid effects. Pharmaceutical products range from prepa-
rations of codeine or tramadol used in the treatment of mild or medium 
pain, through essential medicines such as morphine, to very potent sub-
stances used in alleviating pain after surgery, such as fentanyl, or in pal-
liative care, diacetylmorphine (heroin). 

Before the global emergence of NPS, there were almost 120 opioids 
under international control. From 2015-2023, a further 24 NPS with opi-
oid like effects were scheduled internationally (Figure 45).

Metonitazene
Brorphine

Etonitazepyne
Protonitazene

Etazene
2-methyl-AP-237

Butyrfentanyl
U-47400

Tetrahydrofuranylfentanyl
Ocfentanil

Furanylfentanyl
Carfentanil

Acryloyfentanyl
4-Fluoroisobutyrfentanyl

Parafluorobutyryfentanyl
Orthofluorofentanyl

Methoxyacetylfentanyl
Cyclopropylfentanyl

Valerylfentanyl
Crotonylfentanyl

Isotonitazene

Acetylfentanyl
MT-45

AH-7921

Figure 45: Opioids receptor agonists placed 
under international control since 2015.
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Over 120 opioid receptor agonists, falling into five distinct sub-groups, 
have been reported to UNODC. These substances can be classified as (i) 
“Fentanyl analogues;” (ii) “U-Series” substances; (iii) “Nitazenes;” (iv) “Pip-
erazines” and (v) “Miscellaneous,” which include derivatives structurally 
unrelated to the other four sub-groups (Figure 46).

Fentanyl analogues

Fentanyl analogues can be described as having the 4-anilinopiperidine 
structure as its core, with four possible sites of modification (Figure 47). 

Figure 47:  Generic structural 
representation of fentanyl analogues 
obtained by modification of the highlighted 
key regions and using fentanyl as the 
template.
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While four fentanyl analogues (alfentanil, remifentanil, sufentanil and 
fentanyl itself) have been approved for medical use to manage severe 
pain and in anaesthesia, many fentanyl analogues are derived from 
substances that have been researched for pharmaceutical use but 
have never been marketed. More than 80 fentanyl analogues have been 
reported to UNODC (Figure 48). 

U-Series

A second sub-group of opioid receptor agonists that have been reported 
to UNODC are the “U-Series” compounds. The substances can be differ-
entiated into two families, the cyclohexylbenzamides (e.g., U-47700 and 
AH-7921) and phenylacetamides (e.g., U-48800, U-50488, and U-51754) 
(Figure 49). 
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Figure 48: Common fentanyl analogues 
NPS. Structural differences are highlighted 
in red.

Figure 49: Common cyclohexylbenzamide- 
and phenylacetamide-derived NPS. The 
structural differences are highlighted in red.
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Due to the presence of two chiral centres the synthesis of U-47700 can 
lead to four potential stereoisomers. However, the reported synthesis 
of U-47700 (and its derivative or phenylacetamide analogues) into the 
desired (and active) trans-(1R, 2R)-isomer of this class is straightforward. 
U-4770 has one-tenth of the potency of fentanyl and about 7.5 times the 
potency of morphine in animal studies 255, 256.

The structurally related cyclohexylbenzamide analogue, AH-7921, is a 
synthetic opioid with similar potency to morphine. AH-7921 was never 
marketed, possibly due to its highly addictive properties and risk of 
respiratory depression observed in animal studies. In 2015 it was placed 
under international control as a Schedule I substance within the Sin-
gle Convention on Narcotic Drugs of 1961, and in 2017, U-47700 was 
also placed in the same convention. Since then, related derivatives 
have emerged such as cyclohexylbenzamide- (e.g., isopropyl-U-47700; 
3,4-methylenedioxy-U-47700; U-47931E, “bromadoline” and U-49900) 
and phenylacetamide-derived synthetic opioids (e.g., U-48800; U-50488 
and U-51754).

Nitazenes

Another group of synthetic opioids that have emerged in recent years 
are analogues of the internationally controlled substances clonitazene-

Figure 50: Common nitazene NPS. The 
structural differences are highlighted in red.
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and etonitazene. The first nitazene reported to UNODC, isotonitazene, 
emerged in 2019 and since then 18 substances have emerged. This fam-
ily of synthetic opioids was initially developed in an attempt to access 
safer classes of opioid analgesics, but in fact, the substances discov-
ered had a potency several times higher than morphine (e.g., etonita-
zene, 70x and isotonitazene, 500x)257. The reported substances can be 
differentiated into two sub-families, which include nitrobenzimidazoles 
(e.g., isotonitazene), and benzimidazoles (e.g., metodesnitazene) (Fig-
ure 50). 

Piperazines

The smallest group of synthetic opioids that have been reported to 
UNODC are classified as “piperazines” and include two cinnamylpiper-
azines (e.g., 2-methyl-AP-237 and para-methyl-AP-237 or “AP-238”) and 
one phenethylpiperazine (e.g., MT-45). AP-237 (“bucinnazine”) (Figure 
51), a pharmaceutical opioid prescribed for pain management in can-
cer patients can be considered the progenitor of the two structural ana-
logues 2-methyl-AP-237 and para-methyl-AP-237. In 2019, the 2-meth-
yl-AP-237 appeared on the NPS market. This substance possesses 
analgesic activity but is less toxic than AP-237 in animal studies 258, 259.

Miscellaneous synthetic opioids

The fifth group contains a diverse range of synthetic opioids, that in 
some cases express certain structural similarities to opioid analgesics 
under international control but have never been marketed as a pharma-
ceutical and lack a common core. 

One example is the phenethylpiperidine, brorphine, (Figure 52) which 
has a similar chemical structure to bezitramide an opioid under interna-
tional control. It is a full agonist at the μ -opioid receptor with potency in 
between fentanyl and morphine 260, 261. Deaths associated with the use 
of this substance in combination with other opioids or benzodiazepines 
have been reported by several countries.

Figure 51: Common cinnamylpiperazine- 
and phenethylpiperazine-derived NPS. The 
structural differences are highlighted in red.
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Commonly Used Forms

The substances in this group appears to be used through the most com-
mon routes of administration normally accessible to users (Figure 53). 
Fentanyl can be injected, snorted/sniffed, smoked, taken orally by pill 
or tablet, and spiked onto blotter paper. Analogues are typically seen in 
powder form, which can be used as it is or mixed with another substance 
and then smoked or taken by the intranasal or intravenous route. They 
can also be pressed into tablets, often as falsified forms of other phar-
maceuticals opioid products (e.g.M30) or mixed into an intranasal spray. 
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The commonly reported routes of administration of nitazenes are vaping 
intravenous sublingual and intranasally via spray or insufflation.

Reported Effects

The typical side effect profile of opioid agonist use includes euphoria, 
pupillary constriction, decreased consciousness, impairment of cog-
nition, respiratory depression, sedation, sleepiness, dizziness, nausea, 
vomiting, fatigue, headache, constipation and hallucinatory or dissocia-
tive effects (Figure 54). 

Tolerance to the analgesic and euphoric effects of opioids can develop 
quickly and the euphoric effects of opioids can lead to habituation and 
dependence. Cessation of opioid agonist use leads to a withdrawal 
syndrome, characterized by drug craving, dysphoria, anxiety, insomnia, 
irregular heart rate, loss of appetite, diarrhoea, sweating, nausea, and 
vomiting. The main mechanism of fatal opioid overdose is respiratory 
depression, leading to pathological indicators such as froth in the air-
ways, and cerebral and pulmonary oedema. As fentanyl and its analogues 
have high potency compared to morphine, poor control of dose, poly-
drug use, and patterns of repeated use are most likely contributors to 
the high rates of overdose, respiratory depression, and death associated 
with these drugs. The clinical toxicological properties of many nitazenes 
have not been studied directly. There are few reports from online user 
forums on the acute and chronic physical and psychological effects. The 

adverse effects align with those commonly reported for other synthetic 
opioid NPS such as incoordination, dizziness, drowsiness, mental confu-
sion, sedation, and profound intoxication.

Figure 54: Reported effects of opioid 
receptor agonists.
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Sedatives/hypnotics

Sedative/hypnotic substances are central nervous system (CNS) depres-
sants that suppress, inhibit, or decrease brain activity. They are positive 
allosteric modulators of the central g-aminobutyric acid type A (GABAA) 
receptors, enhancing inhibitory signalling in the central nervous system 
to facilitate sedation. The largest structural group of CNS depressants 
are benzodiazepines, which are widely used in medicine as anticonvul-
sants, anxiolytics, hypnotics, sedatives, skeletal muscle relaxants, and 
tranquilizers. Numerous benzodiazepines have been synthesized for 
use as pharmaceuticals and more than 40 have been placed under inter-
national control. However, several benzodiazepine-type NPS have also 
appeared in recent years, and often marketed in forms of presentation 
that are similar in appearance to legitimate medicines containing benzo-
diazepines (Figure 55).

Benzodiazepines (BZDs) can be classified into eight sub-groups, based 
on their chemical structures: (i) 1,4-benzodiazepines, (ii) 1,5-benzodi-
azepines, (iii) imidazolobenzodiazepines, (iv) triazolbenzodiazepines, 
(v) 2,3-benzodiazepines, (vi) thienotriazolodiazepines, (vii) thienodiaze-
pines, and (viii) oxazolodiazepines (Figure 56).

Figure 55: Sedatives placed under 
international control since 2015.

Phenazepam Etizolam
Flualprazolam

Clonazolam
Diclazepam

Fubromazolam

Figure 56: Sedatives sub-groups.
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More than 30 benzodiazepine-type NPS have been reported to UNODC. 
They primarily belong to these three sub-families: 1,4-benzodiazepines, 
triazolobenzodiazepines and thienotriazolobenzodiazepines (Figure 57 
and 58). 

Figure 57: Chemical structures of five 
sub-families of benzodiazepines (BZDs). 
The structural differences between these 
families and the 1,4-benzodiazepine core 
are highlighted in red.

N

N
Me O

Cl
O

1,5-Benzodiazepine

N

N
R O

R1

Thienodiazepine

S
R3

N

N

O

O

R1

R2

R

R3

R4

Oxazolodiazepine

N

N

Cl

F

NMe

Imidazobenzodiazepine

N
N

2,3-Benzodiazepine

MeEt
MeO

MeO

MeO
OMe

R2

N

N
R O

R1
R5

R2

R3

R4

N

N

R2

X R1

N
NR

N

N

R1

N
NR

S
R2

1,4-Benzodiazepine

Triazolobenzodiazepine

Thienotriazolodiazepine

R = Me, R1 = R3 = R4 = H, R2 = R5 = Cl (Diclazepam)
R = R1 = R3 = R4 = H, R2 = F, R5 = Br (Flubromazepam)
R = R3 = R4 = H, R1 = OH, R2 = F, R5 = NO2 (Nifoxipam)
R = R3 = R4 = H, R1 = Me, R2 = Cl, R5 = NO2 (Meclonazepam)
R = R3 = R4 = H, R1 = OH, R2 = Cl, R5 = Br (3-Hydroxyphenazepam)
R = R1 = R3 = R4 = H, R2 = F, R5 = Cl (Norflurazepam)
R = Me, R1 = R2 = R4 = H, R3 = R5 = Cl (4-chlorodiazepam)
R = Me, R1 = R3 = R4 = H, R2 = Cl, R5 = NO2 (Methylclonazepam)
R = Me, R1 = R3 = H, R2 = R4 = F, R5 = Cl (Difludiazepam)
R = R1 = R3 = R4 = H, R2 = Cl, R5 = Br (Phenazepam)

R = R1 = R3 = R4 = H, R2 = Cl, R5 = NO2 (Cloniprazepam)

X = CH, R = Me, R1 = H, R2 = Br (Bromazolam)
X = CH, R = Me, R1 = H, R2 = NO2 (Nitrazolam)
X = CH, R = Me, R1 = Cl, R2 = NO2 (Clonazolam)
X = CH, R = Me, R1 = F, R2 = Cl (Flualprazolam)
X = CH, R = Me, R1 = F, R2 = Br (Flubromazolam)
X = CH, R = Me, R1 = F, R2 = NO2 (Flunitrazolam)
X = CH, R = CH2NMe2, R1 = H, R2 = Cl (Adinazolam)
X = N, R = Me, R1 = H, R2 = Br (Pyrazolam)

R = H, R1 = Cl, R2 = Et (Metizolam)
R = Me, R1 = Cl, R2 = Et (Etizolam)
R = Me, R1 = H, R2 = Et (Deschloroetizolam)
R = Me, R1 = F, R2 = Cl (Fluclotizolam)

Figure 58: Chemical structures of three 
further sub-families of benzodiazepines 
(BZDs). The structural differences between 
these families and the 1,4-benzodiazepine 
core are highlighted in red.
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A small number of sedative/hypnotic NPS derived from methaqualone 
have also emerged. Methaqualone is a synthetic central nervous sys-
tem (CNS) depressant with sedative/hypnotic, anticonvulsant, antispas-
modic, and local anaesthetic properties 262. This substance was with-
drawn from the pharmaceutical market in many countries because of 
problems of abuse and it is under international control. NPS within this 
group that have been reported to UNODC include etaqualone, mebroqua-
lone, methylmethaqualone, and nitromethaqualone.

Commonly Used Forms

The substances in this group appears to be used through the most com-
mon routes of administration normally accessible (Figure 59). 

Oral
consumption

Oral
consumption

Oral
consumption

Injection

Injection

Figure 59: Sedatives and hypnotics 
commonly used forms.
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Reported Effects

While some benzodiazepine-type-NPS have been placed under interna-
tional control in recent years, there is limited pharmacological and toxi-
cological information on most substances that have emerged. The use 
of benzodiazepines along with opiates or other CNS-depressant drugs 
highly increases the risk of overdose and death. Although deaths involv-
ing benzodiazepines may be under-reported, they are rare without the 
concurrent use of other drugs (Figure 60).

Figure 60: Reported effects of sedatives/
hypnotics.
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Dissociatives

Dissociative substances form a class of hallucinogens that produce 
feelings of detachment and dissociation from self and the environment. 
Dissociatives produce their effects through antagonism of ionotropic 
N-methyl-D-aspartate (NMDA) receptors in the central nervous system 
262. Dissociatives can be classified into two sub-groups: (i) phencycli-
dine-type substances and (ii) 1,2-diarylethylamines (Figure 61). 

There are a number of substances with dissociative effects under inter-
national control e.g., phencyclidine and three. NPS with dissociative 
effects have been placed under international control since 2016 (Figure 
62).

Phencyclidine-type substances

Following the discovery of 1-(1-phenylcyclohexyl)piperidine (phencycli-
dine, PCP) in the mid-1950s, a variety of analogues known as “arylcyclo-
hexylamines” have been developed by systematic modification of the two 
key regions of the PCP structure (Figure 63).

Figure 61: Dissociatives sub-groups.

Figure 62: Dissociatives placed under 
international control since 2015.
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b-Keto-arylcyclohexylamines are closely related to the arylcyclohexyl-
amine family of dissociatives, where the cyclohexane ring is substituted 
with a cyclohexan-2-one group (Figure 64). 

In the same way that arylcylohexylamines share commonality with PCP, 
b-keto-arylcyclohexylamines, are structurally related to the dissociative 
anaesthetic, ketamine. Like the PCP-derived NPS, several b-keto-aryl-
cyclohexylamines have been accessed by systematic modification of 
the basic structure using well-documented approaches. Ketamine and 
phencyclidine have similar modes of action, affecting a range of central 
neurotransmitters. Nevertheless, the structural-activity relationships of 
b-keto-arylcyclohexylamines relative to their arylcyclohexylamine cous-
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Figure 63: Generic structural representation 
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dissociatives obtained by modification 
of the highlighted key regions and using 
phencyclidine (PCP) and ketamine as the 
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Figure 64: Common ketamine-derived 
(beta-keto-arylcyclohexylamine) NPS. 
The structural differences between these 
compounds and ketamine are highlighted 
in red.
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ins remain largely unpublished with indications that ketamine-derived 
NPS are pharmacologically similar. More than 10 b-keto-arylcyclohexyl-
amines have been reported to UNODC.

1,2-Diarylethylamines

Another class of NMDA receptor antagonists to emerge on the NPS 
market are the 1,2-diarylethylamines, which share structural similarities 
to arylcyclohexylamines but are less conformationally restricted due 
to the removal of the cyclohexane core. These compounds have been 
extensively reviewed 263 and can be easily accessed using common 
inexpensive, uncontrolled precursors and simple, single-step chemical 
reactions. The first 1,2-diarylethylamine to appear on the market was 
1-(1,2-diphenylethyl)piperidine (diphenidine) in 2013, shortly followed 
by its 2-methoxy- analogue 1-[1-(2-methoxyphenyl)-2-phenylethyl]piper-
idine (2-methoxphenidine, 2-MXP) and finally N-ethyl-1,2-diphenylethyl-
amine (ephenidine) in 2015 (Figure 65). 

Commonly Used Forms

The routes of administration for dissociatives are in the form of either 
pills or powders, including insufflation, inhalation, ingestion, and intrave-
nous injection (Figure 66). 

Figure 65: Common 1,2-diarylethylamine-
derived NPS. The structural similarity 
between 1,2-diarylethylamines and 
arylcyclohexylamines (PCP, PCE and PHP) 
are highlighted in red.
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Reported Effects

Adverse effects of dissociative-induced intoxication by phencycli-
dine-type substances include effects on both the cardiovascular (tachy-
cardia, hypotension) and central nervous (impaired or loss of con-
sciousness, coma, slowed psychomotor performance, disorientation, 
hallucinations, agitation, and aggression) systems (Figure 67). 

Figure 67: Reported effects of 
dissociatives.
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